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A rotating flexible annular thin disk subjected to the temperature increment of the shaft

clamping the disk was modeled in this paper. At disk top and bottom surfaces and free

outer edge, the heat convection boundaries were assumed. Disk transverse deflection

was considered as a function of both disk radial and circumferential coordinates, and

simultaneously. As a result, the shaft temperature increment causes thermo-elastic

instability of some disk modes. Effects of the shaft temperature increment, ratio of disk

convective heat transfer coefficient to thermal conductivity, disk thickness, nodal circle

and diameter numbers of disk mode on the natural frequencies, thermo-elastic

instability and critical angular speed of the disk were discussed.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Rotating disks are widely used as key components in many structural and machinery applications, such as the
computer hard disk drives, CD and DVD drivers, the turbine rotors, the circular saws, the disk brakes and clutches
for automobile. In practice, the rotating disks are often heated due to friction, driving motor, and other factors.
Thermal stresses are induced in the heated disk, which may cause the variation of disk dynamic responses and even
result in the thermo-elastic instability. Therefore, the dynamics of a rotating flexible heated disk is a topic of great
interest.

There have been some investigations on this topic. Neglecting the temperature distribution along disk thickness,
Nieh and Mote [1] studied the vibration and stability of a thermally stressed rotating annular thin disk with an analytical
heat transfer model using experimentally measured temperatures at two disk radii as the input of model computation.
Under the same negligibility assumption, Mote and Rahimi [2] merged the thermal stresses induced by an axisymmetric
temperature distribution into the disk membrane stresses, and presented a system for real-time control of the
transverse vibration of a rotating annular thin disk, based on a thermal stressing technique and dynamic system
identification. Ghosh [3] investigated the thermal effect on the transverse vibration of a high speed rotating anisotropic
solid thin disk in a steady state heat conduction induced by a temperature increment of the disk center, where the
disk stiffness (flexural rigidity) was considered to be negligible, and the disk top and bottom surfaces were assumed
as insulated boundaries. In Saniei and Luo [4], the natural frequencies and responses for the thermally induced nonlinear
free vibration of heated rotating annular disks were presented analytically through an experimentally obtained
radial temperature distribution by using local heat transfer measurement data. For automotive disk brakes or clutches,
Krempaszky and Lippmann [5] developed a model to estimate the onset of frictionally excited thermo-elastic instabilities
ll rights reserved.
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Nomenclature

a disk outer radius
b disk inner radius
cv specific heat at constant volume
CT the term of thermo-elastic coupling
conj(�) operator for complex conjugate
diag[�] operator for diagonal matrix
E Young’s modulus
g centrifugal stress
h disk thickness
hT convective heat transfer coefficient
IY temperature increment integral
In,Kn the modified Bessel functions
Jn,Yn Bessel functions
k thermal conductivity
m numbers of nodal circle
n numbers of nodal diameter
pm,n imaginary part of the eigenvalue W
qm,n real part of the eigenvalue W
r disk radial direction
sn instability coefficient
T disk temperature distribution
TD shaft temperature
T0 disk initial stress-free temperature, i.e. the

ambient temperature
w disk transverse deflection
xm,n deflection of the disk mode (m,n)

z disk thickness direction
aT coefficient of linear thermal expansion
d�,� Dirac delta function
z dimensionless disk rotating angular speed
zcr disk critical angular speed
zcr

m,n critical angular speed of the disk mode (m,n)
y disk circumferential direction
Y disk temperature increment
YD temperature increment of the shaft
YDc

m,n shaft critical temperature increment
l eigenvalue of the quadratic eigenvalue pro-

blem
n Poisson’s ratio
xr,xy membrane stress resultants of disk tempera-

ture increment
r mass per unit volume of the disk
sr,sy membrane stress resultants of disk rotation
F stress function
W eigenvalue of the self-adjoint eigenvalue pro-

blem
Wm,n eigenvalue W of the disk mode (m,n)
C disk thermal stress
CH the homogenous solution of C
CN the non-homogenous solution of C
O disk rotating angular speed
Om,n natural frequency of the disk mode (m,n) for a

stationary disk
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of annular thin disks under thermal pre-stress by assuming the frictional feedback heat flow in disk thickness
direction only and considering that the frictional contact induces a radially linear stationary temperature distribution.
Under the assumption that the disk vibration deflection was a function of disk radial coordinate only, Nayfeh
and Faris [6] considered the problem of large-amplitude vibrations of a simply supported non-rotating solid disk subjected
to harmonically varying temperature fields arising from an external heat flux, where the temperature distribution
was determined from the radial heat conduction equation subjected to a constant temperature at the disk outer edge.
Sun and Tohmyoh [7] considered the thermal conduction along disk thickness only and the insulated disk upper and
lower surfaces, established and solved the governing equations of coupled thermo-elastic problems for axisymmetric out-
of-plane vibration of non-rotating solid disk. Furthermore, Sun and Tohmyoh [7] used the same assumption of disk
deflection in a function of disk radial coordinate as Nayfeh and Faris [6], that is only the axisymmetric disk modes
possessing zero nodal diameters were considered in these two works. Using the steady-state heat conduction equation
neglecting the temperature distribution along disk thickness and under constant temperatures at inner and outer rims of
the disk, Arafat et al. [8] considered the behavior of non-rotating annular disks with clamped–clamped immovable
boundary conditions and subjected to axisymmetric in-plane thermal loads. It was found that the thermo-elastic
instability for a disk mode possessing non-zero nodal diameters also occurs in the heated disk. Differently from the above
works considering the transverse deflection of heated thin disk, the radial displacement was analyzed for thick disks in
Kordkheili and Naghdabadi [9], Vivio and Vullo [10] and Vullo and Vivio [11]. A semi-analytical thermo-elasticity solution
for hollow and solid rotating axisymmetric disks made of functionally graded materials was presented in Kordkheili and
Naghdabadi [9], in which the temperature distribution was solved via the steady state heat transfer equation through the
radius direction of the disk subjected to the specified temperatures at inner and outer sides of the disk. Featuring the
temperature distribution along disk radius expressed by the polynomial relation, Vivio and Vullo [10] and Vullo and Vivio
[11] discussed the analytical procedure for the evaluation of elastic stresses and strains in linear and nonlinear variable
thickness rotating disks, either solid or annular, subjected to thermal load, and having a fictitious density variation along
the radius.

In this paper, a rotating flexible annular thin disk subjected to the temperature increment of the shaft clamping the disk
is developed under the assumption that the disk transverse deflection is a function of both disk radial and circumferential
coordinates. At the disk top and bottom surfaces and free outer edge, the heat convection boundaries are assumed. The
temperature distribution along the disk thickness and radial directions is considered simultaneously. Natural frequencies,
thermo-elastic instability and critical angular speeds of the disk are all determined and discussed.
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2. Description of model and boundary conditions

A flexible annular disk clamped at inner radius b and free at outer radius a rotates at a constant angular speed O, and the
disk thickness h is very small compared with the outer radius. Due to the heat generation of electromagnetic induction in
the driving motor and friction in the support bearings, the temperature increment of the shaft (spindle) clamping the disk
may be induced inevitably, then disk temperature increases due to the heat conduction between shaft and disk. The
temperature increment of the disk is denoted as Y=T�T0. From Nayfeh [12] and Awrejcewicz et al. [13], including thermal
stresses induced by the temperature increment Y, the governing equation of the rotating flexible thin disk can be
established in the polar coordinates (r,y) fixed on the ground
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where r4=r2r2 is a biharmonic differential operator, r2
¼ ð@2=@r2Þþð@=r @rÞþð@2=r2 @y2

Þ.
The boundary conditions of transverse deflection w at the clamped edge r=b of the disk are

wjr ¼ b ¼ 0, @w=@rjr ¼ b ¼ 0 (2)

Since the bending moment and shear force in the disk vanish at the free edge r=a, the boundary conditions are
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From Nayfeh [12], Nowinski [14] and Awrejcewicz et al. [13], the equation of disk deformation continuity can be
modeled as
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At the clamped edge r=b and free edge r=a, the boundary conditions of the stress function F can be written as
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From Cho and Ahn [15] and Sun and Tohmyoh [7], the governing equation of disk heat conduction can be stated as
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where CT ¼ EaT T0ð2v�1Þ�1z½@ðr2wÞ=@tþO@ðr2wÞ=@y�.
The shaft temperature is specified as a constant TD at the clamped edge r=b of the disk, and then the boundary condition is

Yjr ¼ b ¼YD (8)

where YD=TD�T0.
At the free edge r=a and the top z=h/2 and bottom z=�h/2 surfaces of disk, the convection boundary conditions are

assumed
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3. Solution procedure of the temperature field

As indicated in Refs. [6,8,13–15], the thermo-elastic coupling term CT in Eq. (7) is negligible for the thin disk. Since the
disk and its boundary conditions are all axisymmetric, the temperature increment Y is independent of the disk
circumferential coordinate y. Then for the disk in steady state heat conduction, the heat conduction equation Eq. (7)
reduces to
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From Appendix A, the temperature increment Y(r,z) can be obtained as
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Furthermore, integrating Y(r,z) along disk thickness yields a temperature increment integral
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where IY(b)=YDh.
Nevertheless, as indicated in Appendix A, the symmetry condition Y(r,�z)=Y(r,z) always results in
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4. Solution procedure of the stress function

From Nayfeh [12], the stress function F in Eq. (4) can be expressed as

F¼ gðrÞþCðr,y,tÞ (15)

With Eq. (15), Eqs. (4)–(6) can be rewritten as
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Solution of thermal stress C can be expressed as the summation of a homogenous solution and a non-homogenous one

C¼CHþCN (19)

Appendices B and C present the formula derivations of CH and CN, respectively. As a result, C can be written as
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5. Solution procedure of the disk deflection

Substituting Eqs. (14), (15) and (20) into Eq. (1) yields
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where sr and sy are the radial and circumferential membrane stress resultants of disk rotation in Nayfeh [12], xr=Q0/r and
xy=Q00 are the ones of disk temperature increment.

The boundary conditions Eq. (3) reduce to
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Solution of Eq. (21) can be assumed as

w¼
X1

m ¼ 0

X1
n ¼ �1

einyBm,nðkm,nrÞcm,nxm,n (23)

where xm,�n=conj(xm,n); Bm,nðkm,nrÞ ¼ ½ Jnðkm,nrÞ Ynðkm,nrÞ Inðkm,nrÞ Knðkm,nrÞ �, cm,n ¼ ½ c1 c2 c3 c4 �
T, and Bm,n(km,nr)

cm,n=Bm,�n(km,�nr)cm,�n; km,n and cm,n can be determined by the self-adjoint eigenvalue problem corresponding to the boundary
conditions Eqs. (2) and (22). Orthonormality condition for the radial mode shape Bm,n(km,nr)cm,n isZ a

b
½Bm1 ,nðkm1 ,nrÞcm1 ,nBm2 ,nðkm2 ,nrÞcm2 ,n�r dr¼ dm1 ,m2

(24)

From Galerkin’s method, substituting Eqs. (20) and (23) into Eq. (21), multiplying Eq. (21) by e� inyBm,n(km,nr)cm,n for
m=0,1,y,Nm and integrating both sides over the disk area yield an ordinary differential equation for n nodal diameters as

€xnþ i2nO _xnþðSn�aTYDRnþO2Ln�n2O2IÞxn ¼ 0 (25)

where xn ¼ ½ . . . xm,n . . . �T, see Appendix D for matrices I, Sn, Ln and Rn.
The dimensionless variables are related to their dimensional counterparts by the following expressions:

t¼O0,0t, O¼ zO0,0, Kn ¼ Sn=O2
0,0, Tn ¼ aT Rn=O2

0,0 (26)

where the natural frequency O0,0 of disk mode (0,0) can be found in Appendix D.
Eq. (25) becomes

d2xn=dt2þ i2nzdxn=dtþðKn�YDTnþz
2Ln�n2z2IÞxn ¼ 0 (27)

The homogenous solution of Eq. (27) can be assumed as

xn ¼ eltAn (28)

Substituting Eq. (28) into Eq. (27) yields a quadratic eigenvalue problem

½l2Iþlði2nzIÞþðKn�YDTnþz
2Ln�n2z2IÞ�An ¼ 0 (29)

The imaginary part of the eigenvalue l is the system natural frequency, and the real part can be used to analyze system
stability, that is if any eigenvalue l possesses a positive real part, the corresponding basic solution is unbounded as t-N

and the solution is unstable, i.e. thermo-elastic instability.
Let

l¼ W�i nz (30)

Substituting Eq. (30) into Eq. (29) yields a self-adjoint eigenvalue problem

½W2IþðKn�YDTnþz
2LnÞ�An ¼ 0 (31)

The natural frequency in the frame fixed on the disk is determined by pm,n=ImWm,n. Let qm,n=ReWm,n, then equilibrium of
the flexible disk is unstable when any Re l=qm,n40. Furthermore, an instability coefficient is introduced as

sn ¼max
m
ðqm,nÞ (32)

Therefore, the equilibrium is unstable when sn40, and the equilibrium is stable when snr0.
When the disk rotates at a critical angular speed, large amplitude transverse vibration occurs [1]. The critical angular

speed zcr of the disk can be obtained by a self-adjoint eigenvalue problem yielded from Eq. (29) with l=0,

½ðKn�YDTnÞ�z
2
crðn

2I�LnÞ�An ¼ 0 (33)
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6. Numerical results and discussions

In the following numerical analysis, default parameters of the disk are selected as: E=200 GPa, r=7840 kg m�3, v=0.3;
aT=12�10�6 K, k=60 W/(mK), hT=60 W/(m2 K), hT/k=1 m�1; a=100 mm, b=20 mm, h=1 mm, unless otherwise stated.

The temperature increment YD of the shaft (spindle) clamping the disk causes the disk temperature increment Y due to
the heat conduction between the shaft and the disk. The distribution of disk temperature increment is subjected to the heat
convection boundaries at the disk top and bottom surfaces and free outer edge. Determined from the distribution, the radial
distributions of the temperature increment integral IY and the thermal stresses CH, CN and C are illustrated in Fig. 1(a)–(d),
respectively. IY(r)/h/YD is employed for the normalization of the temperature increment integral IY in Fig. 1(a), where IY(b)/
h/YD=1, CH/YD, CN/YD and C/YD are for those of the thermal stresses in Fig. 1(b)–(d). Since the heat convection on disk
surfaces, the temperature increment integral IY drops dramatically along disk radial direction, as shown in Fig. 1(a). The
integral IY in the case h=1 mm and hT/k=1 m�1 is always larger than in the case h=1 mm and hT/k=3 m�1, whereas smaller
than in the case h=1.2 mm and hT/k=1 m�1. In other words, the decrease of disk thickness h and the increase of the ratio
hT/k of the convective heat transfer coefficient to the thermal conductivity exacerbate the dropping of the disk temperature
increment along disk radial direction. As indicated in Eqs. (16)–(18), the disk thermal stress C is deduced by the
temperature increment integral IY, and C=CH+CN, where the homogenous solution CH is induced by the temperature
increment integral IY and its derivative qIY/qr at the clamped edge r=b, and the non-homogenous one CN is induced by

r
2IY. As shown in Figs. 1(b) and (c), CH is positive and decreases consistently towards vanishing along disk radial direction,

whereas CN is negative and increases towards vanishing. As a result, along disk radial direction, the thermal stress C is
positive, and firstly increases slightly and arrives at the maximum value Cmax around the disk clamping edge, then
decreases towards vanishing, as illustrated in Fig. 1(d). The radial position r* corresponding to the maximum thermal stress

Cmax can be determined by dC/dr=0 from Eq. (20). With Eqs. (11) and (13), one has r2IY ¼
R h=2
�h=2 r

2Ydz¼

�
R h=2
�h=2 @

2Y=@z2 dz in Eqs. (16) and (C.1), thus the distribution of temperature increment Y along disk thickness
Fig. 1. Radial distributions of the temperature increment integral and the thermal stresses of the disk: (a) the temperature increment integral, (b) the

homogenous solution of thermal stress, (c) the non-homogenous solution of thermal stress, and (d) the thermal stress. (——) h=1 mm, hT/k=1 m�1;

( . . . ) h=1 mm, hT/k=3 m�1; and (– – –) h=1.2 mm, hT/k=1 m�1.
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Fig. 2. Radial distribution of r2IY. See Fig. 1 for figure key of lines.
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zA[�h/2,h/2] causes CN. As illustrated in Fig. 2, r2IY is zero at the clamped edge r=b due to the constant temperature

increment YD along disk thickness. Along disk radial direction, r2IY firstly increases as a result of the remarkable changes
of Y along disk thickness for the heat convection on disk surfaces, and then decreases gradually because the heat convection
becomes weaker with the dropping of Y. Since the distribution of temperature increment along disk thickness is involved in
this paper and C is the combination of the increasing CN and the decreasing CH, a maximum thermal stress Cmax could
occur. Moreover, thermal stress C increases with the increase of disk thickness h and the decrease of ratio hT/k in Fig. 1(d).

Fig. 3 illustrates effects of the shaft temperature increment YD on the real and imaginary parts of the eigenvalues for a
non-rotating disk. The imaginary part pm,n is the natural frequency in the frame fixed on the disk. With the increase of YD,
some natural frequencies pm,n decrease, such as p0,0 and p0,1, but others increase, such as p0,2 and p0,3. The decreasing pm,n

vanishes for large enough YD, such as p0,0 and p0,1 in Fig. 3(a) and (c) separately. However, qm,n is always zero for YD

resulting in non-zero pm,n, whereas YD with vanishing pm,n induces non-zero qm,n. The minimum value of YD inducing

pm,n=0 or the maximum one inducing qm,n=0 is defined as the shaft critical temperature increment Ym,n
Dc . pm,n and qm,n

vanish simultaneously at Ym,n
Dc , as illustrated in Fig. 3(a)–(d). From Eq. (32), any shaft temperature increment larger than

Ym,n
Dc will cause non-zero qm,n and sn40, then thermo-elastic instability of the heated disk occurs. Furthermore,

substituting Wm,n=qm,n+ipm,n=0 into Eq. (31) yields a self-adjoint eigenvalue problem ðKn�YDTnþz
2LnÞAn ¼ 0, and Ym,n

Dc can

be determined from it. When YD4Ym,n
Dc , the value of non-zero qm,n increases consistently for increasing YD, that is

thermo-elastic instability becomes more severe. In addition, the disk with larger thickness h holds higher natural

frequency pm,n, smaller qm,n and larger Ym,n
Dc . Therefore, thick disk is beneficial to suppress the thermo-elastic instability.

As indicated in Fig. 3, the variation of natural frequency pm,n is distinct for the disk modes possessing different nodal circles and
diameters, such as p0,1, p0,2 and p1,2. For a non-rotating disk z=0, Table 1 presents the increase/decrease trend of pm,n as YD

increases for different disk mode (m,n), disk thickness h and the ratio hT/k. Furthermore, there is a shaft critical temperature
increment Ym,n

Dc only for the disk mode with the decrease trend of pm,n. For the disk with h=1 mm and hT/k=1 m�1 (Case I) or
h=1.2 mm and hT/k=1 m�1 (Case III), the decrease trend happens when m=0 and nr1, m=1 and nr3, m=2 and nr6; but for
h=1 mm and hT/k=3 m�1 (Case II), it happens when m=0 and nr1, m=1 and nr2, m=2 and nr4. Thus, the disk thickness h

does not affect the increase/decrease trend of pm,n, i.e. the existence of YDc
m,n and thermo-elastic instability for a disk mode (m,n)

is not related to the disk thickness. However, the existence extends to the disk modes possessing larger nodal diameters n with the
increase of m and the decrease of the ratio hT/k. Table 1 also indicates value sorting of pm,n for the three Cases I–III. By comparing
Case I with Case III, larger disk thickness increases the value of pm,n for any disk mode. Nevertheless, the comparison of Cases I and
II indicates that, increasing the ratio hT/k, the value of pm,n increases when m=0 and nr1, m=1 and nr5, m=2 and nr10 (at
least), and the decrease trend of pm,n for disk modes (1,3), (2,5) and (2,6) in Case I becomes the increase trend in Case II. The effects
of ratio hT/k can be interpreted as the decrease of disk thermal stress, as indicated in Fig. 1(d). In addition, since the ratio hT/k is
merged into YDTnðhT=kÞ in Eq. (31), the increase of YD promotes the effects of hT/k on pm,n, and there is no effect when YD=0, as
illustrated in Fig. 3(a), (c), (e) and (f). Therefore, a larger ratio hT/k can suppress or even avoid the thermo-elastic instability.
Because the natural frequency pm,n and shaft critical temperature increment YDc

m,n of disk mode mZ1 are much larger than
those of m=0, as shown in Fig. 3, only the disk modes possessing zero nodal circle m=0 are involved in following analysis.

With Eq. (21), potential energies produced by disk membrane stresses of disk rotation and temperature increment can
be written as

Vs ¼
1

2

Z a

b

Z 2p

0
½ðO2rha2srÞð@w=@rÞ2þðO2rha2syÞð@w=@y=rÞ2�r dr dy (34)

Vx ¼
1

2

Z a

b

Z 2p

0
½ð�YDEaTxrÞð@w=@rÞ2þð�YDEaTxyÞð@w=@y=rÞ2�r dr dy (35)
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Fig. 3. Effects of the shaft temperature increment on the eigenvalues. z=0: (a) and (b) n=0; (c) and (d) n=1; (e) n=2; and (f) n=3. See Fig. 1 for figure key

of lines.
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where radial distributions of the membrane stress coefficients are illustrated in Fig. 4(a)–(d). From Fig. 4(a), the centrifugal
membrane stresses O2rha2sr and O2rha2sy due to disk rotation are all always positive, then their mechanical work Vs is
positive, thus they could increase the stiffness of the disk and result in a global positive effect on all natural frequencies
[1,2]. The membrane stress resultants xr and xy in Eq. (21) also can be expressed as xr=xr

H+xr
N and xy=xyH+xyN

corresponding to the homogenous and non-homogenous solutions of thermal stress C=CH+CN. Fig. 4(b) and (c) present
the radial distributions of homogenous and non-homogenous membrane stresses �YDEaTxr

H, �YDEaTxyH and
�YDEaTxr

N, �YDEaTxyN of disk temperature increment, respectively. Along disk radial direction, �YDEaTxr
H is always

negative, whereas �YDEaTxr
N is positive; �YDEaTxyH changes from negative to positive, whereas �YDEaTxyN from

positive to negative. As a result, (�YDEaTxr)=(�YDEaTxr
H)+(�YDEaTxr

N) changes from positive to negative, whereas
(�YDEaTxy)=(�YDEaTxyH)+(�YDEaTxyN) from negative to positive in Fig. 4(d). Due to the sign change of membrane
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Table 1
The increase/decrease trend of natural frequency with the increase of shaft temperature increment for a non-rotating disk.

pm,n n=0 n=1 n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

m=0 Ia rb,Cc r,C sb,B s,B s,B s,B s,B s,B s,B s,B s,B

IIa r,Bc r,B s,C s,C s,C s,C s,C s,C s,C s,C s,C

IIIa r,Ac r,A s,A s,A s,A s,A s,A s,A s,A s,A s,A

m=1 I r,C r,C r,C r,C s,C s,C s,B s,B s,B s,B s,B

II r,B r,B r,B s,B s,B s,B s,C s,C s,C s,C s,C

III r,A r,A r,A r,A s,A s,A s,A s,A s,A s,A s,A

m=2 I r,C r,C r,C r,C r,C r,C r,C s,C s,C s,C s,C

II r,B r,B r,B r,B r,B s,B s,B s,B s,B s,B s,B

III r,A r,A r,A r,A r,A r,A r,A s,A s,A s,A s,A

a I: h=1 mm, hT/k=1 m�1; II: h=1 mm, hT/k=3 m�1; III: h=1.2 mm, hT/k=1 m�1.
b s: pm,n increases; r: pm,n decreases.
c Value sorting of pm,n for (I, II, III), A4B4C.

Fig. 4. Radial distributions of disk membrane stress coefficients: (a) the ones of disk rotation, (b) the homogenous ones of disk temperature increment,

(c) the non-homogenous ones of disk temperature increment, and (d) the ones of disk temperature increment. See Fig. 1 for figure key of lines.

Y.-C. Pei et al. / Journal of Sound and Vibration 329 (2010) 3550–35643558
stresses �YDEaTxr and �YDEaTxy along disk radial direction, they could not have a global negative or positive effect on all
natural frequencies depending on the given disk mode (m,n), as indicated in Fig. 3 and Table 1. A similar phenomenon also
can be found in Mote and Rahimi [2].

Effects of the disk rotating speed z on real and imaginary parts of the eigenvalues are illustrated in Fig. 5. From
Fig. 5(a)–(d), large enough YD causes p0,0,p0,1 vanishing at low speed z of disk rotation, and then p0,0,p0,1 increase when z is
larger than a critical value zSc

0,0,zSc
0,1 where p0,0,p0,1=0 and q0,0,q0,1=0 simultaneously. Correspondingly, the real parts

q0,0,q0,1 are non-zero when zpzSc
0,0,zSc

0,1, and then q0,0,q0,1 vanish when z4zSc
0,0,zSc

0,1. Therefore, due to the centrifugal
stress g(r) induced by the disk rotation, the larger disk rotating speed z can suppress or even avoid the thermo-elastic
instability. As shown in Fig. 3(b), (d) and 5(b), (d), the values of non-zero q0,0 are much larger than that of q0,1, that is the
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Fig. 5. Effects of the disk rotating speed on the eigenvalues: (a) and (b) m=0, n=0; (c) and (d) m=0, n=1; (e) m=0, n=2; and (f) m=0, n=3. (K) YD=0 1C;

(’) YD=150 1C; and (m) YD=300 1C. See Fig. 1 for figure key of lines.
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thermo-elastic instability of disk mode (0,0) is much more dangerous than that of (0,1). However, the natural frequencies
p0,2,p0,3 increase consistently for increasing disk rotating speed z, as shown in Fig. 5(e) and (f). As a result, the zero p0,2,p0,3

and non-zero q0,2,q0,3 cannot appear, then the thermo-elastic instability is absent for the disk modes (0,2) and (0,3). As
illustrated in Fig. 5, with the increase of disk thickness h, p0,0,p0,1 and p0,2,p0,3 increase, but q0,0,q0,1 decrease. Furthermore,
the larger ratio hT/k increases p0,0,p0,1 and decreases q0,0,q0,1 and p0,2,p0,3. Nevertheless, p0,2,p0,3 cannot vanish, because the
shaft temperature increment YD not only determines the performances of hT/k, i.e. YDTnðhT=kÞ in Eq. (31), but also
increases p0,2,p0,3, as indicated in Fig. 3(e) and (f) and Table 1.

From Figs. 3(a)–(d) and 5(a)–(d), the shaft critical temperature increment YDc
m,n appears when Wm,n=qm,n+ipm,n=0, and

then it can be determined by the self-adjoint eigenvalue problem ðKn�YDTnþz
2LnÞAn ¼ 0. YDc

m,n varying with the disk
rotating speed z is illustrated in Fig. 6(a) and (b) for the disk mode (0,0) and (0,1), respectively, i.e. the boundaries of
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Fig. 6. Parameter boundaries of thermo-elastic instability: (a) m=0, n=0; and (b) m=0, n=1. See Fig. 1 for figure key of lines.

Fig. 7. Effects of the shaft temperature increment on the disk critical angular speed: (a) m=0, n=0; (b) m=0, n=1; (c) m=0, n=2; and (d) m=0, n=3. See

Fig. 1 for figure key of lines.
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thermo-elastic instability are plotted in the z�YD parameter plane. The values of YDc
0,1 are much larger than those of

YDc
0,0, thus the thermo-elastic instability of disk mode (0,0) is more easily induced. Furthermore, YDc

0,0 and YDc
0,1 increase

consistently with the increase of disk rotating speed z, the disk thickness h and ratio hT/k also increase them, as shown in
Fig. 6.

In Fig. 7, the effects of the shaft temperature increment YD on the disk critical angular speed zcr are illustrated. From
Eqs. (30) and (31), lm,n can be rewritten as qm,n+i(pm,n�nz). In Eq. (33), the value of zcr is determined from Eq. (29) under
the condition of lm,n=0, i.e. qm,n=0 and pm,n=nz. Nevertheless, the shaft critical temperature increment YDc

m,n appears
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when Wm,n=0, i.e. qm,n=0 and pm,n=0, as discussed in the above sections. Therefore, for the disk mode possessing zero nodal
diameter (n=0) only, which can cause nz=0, the boundaries of thermo-elastic instability in Fig. 6(a) are the same lines of
the disk critical angular speed zcr varying with the shaft temperature increment YD in Fig. 7(a). For disk mode (0,0) and
(0,1), one has n2I�Lno0 in Eq. (33) which always causes the absence [16] of critical angular speeds for a rotating free disk
without the thermal factor (YD=0), but there is zcr if and only if Kn�YDTno0. Then Eq. (33) can be rewritten as
½ðYDTn�KnÞ�z

2
crðLn�n2IÞ�An ¼ 0, where YD has a negative effect on Kn�YDTn and natural frequencies p0,0 and p0,1 as given

in Fig. 3 and Table 1, so that a large enough YD could result a positive effect on YDTn�Kn and zcr
0,0,zcr

0,1, as shown in Figs. 7
(a) and (b). For disk mode (0,2) and (0,3), one has n2I�Ln40, there is zcr when Kn�YDTn40, where YD has a positive effect
on Kn�YDTn and natural frequencies p0,2 and p0,3 in Fig. 3 and Table 1, thus zcr

0,2,zcr
0,3 increases in Fig. 7(c) and (d).

Furthermore, there are zcr
0,2,zcr

0,3 at YD=0, then zcr
0,2,zcr

0,3 increase with the increase of YD, as illustrated in Fig. 7(c) and
(d). The larger disk thickness h decreases zcr

0,0,zcr
0,1 but increases zcr

0,2,zcr
0,3. Nevertheless, zcr

0,0,zcr
0,1 and zcr

0,2,zcr
0,3

decrease as the ratio hT/k increases. Therefore, a small ratio hT/k is beneficial to increase the disk critical angular speed.

7. Conclusions

A rotating flexible annular disk subjected to the temperature increment of the shaft clamping the disk was modeled in
this paper. Natural frequencies, thermo-elastic instability and critical angular speed of the disk were determined and
discussed. The following conclusions can be drawn:
(1)
 Disk thermal stress induced by the shaft temperature increment increases for increasing disk thickness and decreasing
ratio of disk convective heat transfer coefficient to thermal conductivity.
(2)
 Thermo-elastic instability of the disk occurs when the natural frequency in the frame fixed on the disk of a disk mode
can decrease and vanish with the increase of shaft temperature increment.
(3)
 The thermo-elastic instability extends to the disk modes possessing larger nodal diameters with the increase of nodal
circle number and the decrease of ratio of disk convective heat transfer coefficient to thermal conductivity.
(4)
 The thermo-elastic instability can be suppressed or avoided by increasing ratio of disk convective heat transfer
coefficient to thermal conductivity, disk thickness and rotating angular speed.
(5)
 Disk critical angular speed increases as ratio of disk convective heat transfer coefficient to thermal conductivity
decreases and the shaft temperature increment increases.
Acknowledgments

This work is supported by the Fundamental Research Funds of Jilin University P.R. China (Scientific Frontier and
Interdisciplinary Innovation Project) under Grant no. 200903170: Multi-Body Dynamics of Rotating Flexible Disk with
Thermo-Elastic Coupling; Jilin Provincial Science & Technology Department: Study on the key technology of disk brake
based on multi-field coupling method (20080109). The authors would like to thank Chassis Part Factory, Changchun FAW-
Sihuan Automobile Co., Ltd., P.R. China for their help in contributing to the completeness of this paper.

Appendix A. Formula derivations of the temperature increment H(r,z)

Using the method of separation variables, the solution of Y(r,z) can be assumed as

Yðr,zÞ ¼ ZðzÞRðrÞ (A.1)

Substituting Eq. (A.1) into Eq. (11) yields (R00+R0/r)/R=�Z00/Z=o2, o40, thus

Z
00

þo2Z ¼ 0 (A.2)

R
00

þr�1R0�o2R¼ 0 (A.3)

Solution of Eq. (A.2) can be expressed as

Z ¼ c1 sinðozÞþc2 cosðozÞ (A.4)

Substituting the solution Eq. (A.4) into Eq. (10) yields a self-adjoint eigenvalue problem

hT sinðoh=2Þþko cosðoh=2Þ hT cosðoh=2Þ�ko sinðoh=2Þ

�hT sinðoh=2Þ�ko cosðoh=2Þ hT cosðoh=2Þ�ko sinðoh=2Þ

" #
c1

c2

" #
¼ 0 (A.5)

When the matrix determinant of Eq. (A.5) vanishes, o can be determined from

oshþ2 tan�1ðkos=hT Þ ¼ ð2s�1Þp with c1 ¼ 0 and c2 ¼ 1 (A.6)

oshþ2 tan�1ðkos=hT Þ ¼ 2sp with c1 ¼ 1 and c2 ¼ 0 (A.7)
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where s=1,2,y. Since the temperature increment YD considered is symmetric with respect to z=0, Y(r,�z)=Y(r,z) yields
c1=0 in Eq. (A.4), i.e. Z=c2 cos(oz), then os solved from Eq. (A.7) with c2=0 is meaningless.

Solution of Eq. (A.3) can be expressed as

Rs ¼ bsI0ðosrÞþdsK0ðosrÞ (A.8)

Substituting Eq. (A.8) into the boundary condition Eq. (9) yields

ds ¼�ea
s bs=eb

s (A.9)

where es
a=hTI0(osa)+oskI1(osa), es

b=hTK0(osa)�oskK1(osa).
With Eqs. (A.4) and (A.8), substituting Eq. (A.1) into the boundary condition Eq. (8) yields

Yðb,zÞ ¼
X1
s ¼ 1

cosðoszÞ½eb
s I0ðosbÞ�ea

s K0ðosbÞ�bs=eb
s ¼YD (A.10)

where bs can be solved by the least squares fitting method using cos(osz) as the basis function

bs ¼
YDeb

sbs

eb
s I0ðosbÞ�ea

s K0ðosbÞ
(A.11)

^

bs

^

2
64

3
75¼

& � � � c

� � �
R h=2
�h=2cosðos1

zÞcosðos2
zÞdz � � �

c � � � &

2
664

3
775
�1 ^R h=2

�h=2cosðoszÞdz

^

2
664

3
775 (A.12)

where s1,s2=1,2,y.
As a result,

Yðr,zÞ ¼YD

X1
s ¼ 1

bs

eb
s I0ðosrÞ�ea

s K0ðosrÞ

eb
s I0ðosbÞ�ea

s K0ðosbÞ
cosðoszÞ (A.13)

Appendix B. Formula derivations of the homogenous solution WH

The homogenous form of Eqs. (16)–(18) can be written as

r4CH ¼ 0

@2CH

@r2
�v

1

r

@CH

@r
þ

1

r2

@2CH

@y2

 !
þEaT IY

" #�����r ¼ b ¼ 0
(B.1)

@

@r
ðr

2CHÞþ
1þv

r2

@2

@y2

@CH

@r
�
CH

r

� �
þEaT

@IY
@r

" #�����r ¼ b ¼ 0 (B.2)

@CH

@r
þ

1

r

@2CH

@y2

 !
r ¼ a ¼ 0,

@2CH

@r @y
�

1

r

@CH

@y

 !�����r ¼ a ¼ 0

����� (B.3)

Solution of Eq. (B.1) can be assumed as

CH ¼
X1

n ¼ �1

einyCH
n ðr,tÞ (B.4)

Substituting the solution Eq. (B.4) into Eq. (B.1) yields

C
0000H

n þ2r�1C
000H

n�r�2ð2n2þ1ÞC
00H

n þr�3ð2n2þ1ÞC0Hn þr�4ðn2�4Þn2CH
n ¼ 0 (B.5)

For na0, the solution of Cn
H can be expressed as

CH
n ¼RnðrÞc

H
n (B.6)

where cH
n ¼ ½h1 h2 h3 h4 �

T and RnðrÞ ¼ ½ r�n rn r2�n r2þn �.
Since IY(r) is not related to the disk circumferential coordinate y, substituting Eqs. (B.4) and (B.6) into the boundary

conditions Eqs. (B.2) and (B.3) yields cn
H=0.

Specially, when n=0, Eq. (B.5) becomes

C
0000H

0 þ2r�1C
000H

0�r�2C
00H

0 þr�3C0H0 ¼ 0 (B.7)

Substituting Eq. (B.4) into the second boundary condition in Eq. (B.3) yields in(Cn
0H�Cn

H/r)|r =a=0, but which always
vanishes when n=0, then only the solution of Cn

0H can be solved from Eq. (B.7) and its other boundary conditions
in Eqs. (B.2) and (B.3). However, (Cn

0H�Cn
H/r)|r= a=0 is available to solve Cn

H(cn
H) for a non-zero n in Eq. (B.6).



ARTICLE IN PRESS

Y.-C. Pei et al. / Journal of Sound and Vibration 329 (2010) 3550–3564 3563
Similarly, (C0
0H�C0

H/r)|r= a=0 can be remained to solve C0
H, and the remaining does not affect the solution of C0

0H. Further,
solution of C0

H can be solved as

CH
0 ¼R0ðrÞc

H
0 (B.8)

where cH
0 ¼ ½h1 h2 h3 h4 �

T, and R0ðrÞ ¼ ½1 r2 ln r r2 ln r �.
By substituting Eq. (B.8) into the boundary conditions Eqs. (B.2) and (B.3) with the remaining, c0

H can determined as

cH
0 ¼�EaTYD

X1
s ¼ 1

2sinðosh=2Þ

R
00

0ðbÞ�vb�1R00ðbÞ

R
000

0ðbÞþb�1R
00

0ðbÞ�b�2R00ðbÞ

R00ðaÞ

R00ðaÞ�a�1R0ðaÞ

2
66664

3
77775

�1
RsðbÞ=os

R
0

sðbÞ=os

0

0

2
66664

3
77775 (B.9)

As a result, the homogenous solution is obtained,

CH ¼ ½1 r2 ln r r2 ln r �cH
0 (B.10)

Appendix C. Formula derivations of the non-homogenous solution WN

The non-homogenous form of Eqs. (16)–(18) can be written as

r
4CN ¼�EaTr

2IY ¼�2EaTYD

X1
s ¼ 1

osRsðrÞ sinðosh=2Þ (C.1)

@2CN

@r2
�v

1

r

@CN

@r
þ

1

r2

@2CN

@y2

 !" #
r ¼ b ¼ 0,

@

@r
ðr2CNÞþ

1þv

r2

@2

@y2

@CN

@r
�
CN

r

� �" #�����r ¼ b ¼ 0

����� (C.2)

@CN

@r
þ

1

r

@2CN

@y2

 !
r ¼ a ¼ 0,

@2CN

@r @y
�

1

r

@CN

@y

 !�����r ¼ a ¼ 0

����� (C.3)

The solution of @2CN=@t2þr
4CN ¼ 0 can be expressed as

CN ¼
X1

m ¼ 0

X1
n ¼ �1

einySm,nðgm,nrÞdm,nyN
m,n (C.4)

where ym,�n
N=conj(ym,n

N); Sm,nðgm,nrÞ ¼ ½ Jnðgm,nrÞ Ynðgm,nrÞ Inðgm,nrÞ Knðgm,nrÞ �, dm,n ¼ ½ d1 d2 d3 d4 �
T, and

Sm,n(gm,nr)dm,n=Sm,�n(gm,�nr)dm,�n. gm,n and dm,n can be determined by the self-adjoint eigenvalue problem corresponding
to the boundary conditions Eqs. (C.2) and (C.3).

From Galerkin’s method, substituting Eq. (C.4) into Eq. (C.1) yields an expression, multiplying the expression by
e� inySm,n(gm,nr)dm,n and integrating it over the disk area yield ym,n

N=0 when na0. However, when n=0, employing the
same remaining in Appendix B to the second boundary condition in Eq. (C.3), ym,0

N can be solved as

yN
m,0 ¼�EaTYDg�4

m,0

X1
s ¼ 1

2os sinðosh=2Þ

Z a

b
RsðrÞSm,0ðgm,0rÞdm,0r dr (C.5)

As a result, the non-homogenous solution is obtained,

CN ¼
X1

m ¼ 0

Sm,0ðgm,0rÞdm,0yN
m,0 (C.6)

Appendix D. Matrices for n nodal diameters

Stiffness matrix for n nodal diameters can be obtained as a diagonal matrix,

Sn ¼ diag½ . . . O2
m,n . . . � (D.1)

where Om,n ¼ hk2
m,n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E=12=r=ð1�v2Þ

p
, and Sn=S�n. Moreover, I is the identity matrix with the same size of Sn.

The matrix induced by membrane stress resultants sr, sy of disk rotation can be expressed as

Ln ¼

& ^ c

� � � kn
m1 ,m2

� � �

c ^ &

2
64

3
75 (D.2)

where kn
m1 ,m2

¼ a2cT
m1 ,n½

R a
b ðsrB

0T
m1 ,nB0m2 ,nþsyn2r�2BT

m1 ,nBm2 ,nÞr dr�cm2 ,n, kn
m1 ,m2

¼ kn
m2 ,m1

, m1,m2=0,1,y,Nm, and Ln=L�n.
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The matrix induced by thermal stress C can be expressed as

Rn ¼

& ^ c

� � � Rn
m1 ,m2

� � �

c ^ &

2
64

3
75 (D.3)

where Rn
m1 ,m2

¼ ðE=rhÞcT
m1 ,n½

R a
b ðxrB0Tm1 ,nB0m2 ,nþxyn2r�2BT

m1 ,nBm2 ,nÞr dr�cm2 ,n, Rn
m1 ,m2

¼ Rn
m2 ,m1

, and Rn=R�n.
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